
ANNUAL JOURNAL OF ELECTRONICS, 2009, ISSN 1313-1842

64

Hardware Accelerator for Raptor Decoder

Todor Mladenov Mladenov, Saeid Nooshabadi and Kiseon Kim

Abstract – Hard Raptor Codes (designed for erasure
channels) are widely used for mobile multimedia content
delivery, and yet they have not been investigated in the
context of embedded systems where the energy dissipation is
as important as the timing performance. The most time
consuming part of Raptor decoder is the matrix inversion
operation. This paper proposes a hardware accelerator, for
two matrix inversion algorithms, as a part of Raptor decoder
implemented on a system on a chip (SoC) platform with a
soft-core embedded processor. The performance, energy
profile and resource implication are analyzed and compared
with a pure software implementation.

Keywords – Raptor Codes, Matrix Inversion, FPGA

I. INTRODUCTION

 Multimedia on mobile devices requires secure delivery
of various sized data with minimum negotiation overhead.
Here is where Raptor codes [1],[2] have come quite useful
and outperformed the already well known coding schemes.
Recently there have been two standards, namely 3GPP
MBMS (Multimedia Broadcast/Multicast Services) [3] and
DVB-H [4], which have included systematic Raptor codes
in their specifications for content delivery.
 Although Raptor codes are growing as a preferred
mobile multimedia delivery scheme, experimental data
relating to their implementations are reported from
simulation on a workstation platform. As far as we are
aware, their hardware implementations for mobile
embedded systems have not yet been investigated.
 This paper looks at the implementation of Raptor codes
on an embedded system platform, where resources in terms
of computational and power dissipation are limited. The
most demanding part of the Raptor decoder, profiled to
take 92% of the decoding time, is the matrix inversion
operation. This motivates us to look for a hardware
implementation of the matrix inversion that would reduce
both the decoding time and the energy dissipation. We
propose such dedicated hardware blocks for the well
known Gaussian elimination (GE) algorithm and the
efficient matrix inversion algorithm (SA) proposed in
[3],[4]. The relative performance of these two algorithms in
terms of decoding time, power, energy and area trade offs
are demonstrated. We propose and design hardware
enhancements for GE and SA based on their algorithmic
structures. Finally, based on the profiling data, suitability
assessments are made for the implementation of GE and
SA on an embedded system platform.
 The chosen embedded system platform is a NIOS soft-
core processor, running on an EP1S40F780C5 Altera
Stratix FPGA, with 41,250 logical elements, 3,423,744
total memory bits (2,097,152 bits maximum single memory
size), 14 DSP blocks and 129 (9-bit) embedded multipliers.

Fig.1. Raptor Codes on hardware/software NIOS embedded
system

This device is housed on the NIOS Development Board
Stratix Professional Edition with 16MB of SDRAM
memory. NIOS soft-core processor can be augmented with
custom instructions and additional peripheral devices. Fig.1
depicts the high level block diagram of the embedded SoC
platform for the implementation of Raptor codes.
 This paper is organized as follows. In Section II, we
briefly explain the operation of a Raptor decoder. Section
III describes and presents the details of GE and SA, the two
algorithms for the matrix inversion used in this paper.
Section IV presents the hardware implementation
performance results in terms of execution time, power and
energy, and hardware resources and compares them to the
software implementation presented in [5]. Section V
concludes the paper.

II. SYSTEMATIC RAPTOR DECODER

 A Raptor code can be viewed as a regular linear block
code, which makes it possible to be represented by a
generator matrix. A block diagram of systematic Raptor
encoder and decoder is shown in Fig.2. The decoding
process of Raptor codes exchanges the positions of the
Code Constraints Processor and the LT Encoder(Decoder)
with the proper dimensions for the GLT LT generator
matrices. The output vector e, containing N symbols,
generated by the encoder is received by the decoder across
the channel as input vector e', containing N' (K ≤ N' ≤ N)
encoded symbols (which may be nonconsecutive, where K
is the number of source symbols). Vector e' is padded with
S+H zeroes to dimension it to (M=N'+S+H). Starting with
(N'-K) the value of N' is iteratively incremented to make
the Code Constraints Preprocessor matrix A invertible.
The difference (N'-K) is equal to or greater than the number
of received encoded symbols lost in the channel. The
decoding is performed according to (1) and (2), where GLT
is a LT generator matrix with dimension of K × L. All
operations are performed in Galois Field GF(2).

T. Mladenov, S. Nooshabadi and K. Kim are with the
Department of Information and Communications, Gwangju
Institute of Science and Technology, Gwangju, South Korea, e-
mails: {todor,saeid,kskim@gist.ac.kr}

ANNUAL JOURNAL OF ELECTRONICS, 2009

65

Fig.2. Block diagram of the systematic Raptor Codes

 (1)

 (2)

 At the decoder side the submatrix GLT (1..N') is first
built from the input data. The sequence number of the nth
received encoded symbol is used to generate the nth row of
the submatrix GLT (1..N') through the LT encoding
process.

III. MATRIX INVERSION ALGORITHMS

 The most common matrix inversion algorithm is GE [6].
The pseudo code for a GF(2) GE algorithm where
elimination and backward substitution are performed
together, is shown in Algorithm 1 .The main operations
involved in this algorithm are “row exchange” and “row
XOR” (Exclusive-OR).
 The specifications in [3] and [4] recommend SA as a
more efficient technique for matrix inversion. A version of
SA technique is presented in Algorithm 2. The operation of
SA is as follows.
 In Phase I matrix A is reduced to the following form:

 (3)

 This reduction is performed iteratively, by first
relocating the rows containing the minimum number of
“1s” to the top, and then moving the first column having
“1” in this row to the beginning at column location i, and
the remaining columns with “1” to the end of the row at
column locations m-u-1. Note that i and u are initialized to
0. While, in each row, i increments only once per row, u
can increment multiple times.
 In each iteration of the algorithm one row from the top is
excluded from the consideration. Further, the count of “1s”
within a row is confined to columns i to (m-u-1). Phase I is
completed when (L=i+u).

 In Phase II submatrix U is partitioned into lower and
upper submatrices U'i×u and U''M-i×u, respectively. The
lower matrix U''M-i×u is transformed into the identity
matrix Iu through the normal Gaussian elimination
technique. The (M-L) rows that are left below Iu are
discarded. The form of the matrix produced at the end of
Phase II is:

1'
]1:0[][−

×− ⋅= LM
T

L Aezc
T

]1:0[]1:0[−− ⋅= LLTK cGt

⎥
⎦

⎤
⎢
⎣

⎡
= ×

×−
× uM

iiM

i
LMPhase U

Z
I

A
I

)(
)(

ANNUAL JOURNAL OF ELECTRONICS, 2009

66

 (4)

 In Phase III the upper matrix U' is zeroed by XOR of its
individual rows with the sufficient number of rows from
the lower matrix Iu.

 (5)

 It was shown in [5] that for pure software
implementation and the "PACKED WORD" memory
organization (where 32 matrix elements are packed
together into a single 32-bit memory word) the simple GE
algorithm outperforms SA by a factor of 20.48.

IV. HARDWARE IMPLEMENTATION

 The inversion of the Code Constraints Processor matrix
in Fig. 2 has been profiled to be the most time consuming
part of the Raptor decoder. To reduce this computational
bottleneck, in what follows, a dedicated hardware block for
matrix inversion is proposed (Dedicated Raptor Code
Hardware in Fig.1), and its performance, power, energy
dissipation, and the required hardware resources are
presented and analyzed.
 Fig.3 shows the block diagram of the hardware
accelerator block. The Avalon switch fabric uses a slave
port to set the Control Registers that initialize the hardware
accelerator. During the initialization the size and initial
addresses for matrix and vectors are set. Control Registers
also control operation of the hardware like initiating START
and STOP commands. The Hardware accelerator block
uses an Avalon master port to access the whole memory
mapped address space of the NIOS processor, and send
interrupts to NIOS and receive interrupts from other
peripheral devices. For a more flexible design Row &
Column Exchange Logic, and Row XOR Logic units are
designed to be self contained units that interface with the
GE/SA Control Logic finite state machine. They share a
common address generation path through the Arithmetic
Unit that contains two 32-bit adders and one 16-bit
multiplier. The Latch circuit only exists in the SA version
of the hardware accelerator.

A. Performance
 SA algorithm includes a procedure for counting the
number of “1s” in the matrix rows (Phase 1, lines 4 to 11)
in Algorithm 2. After a memory read access the Avalon
switch fabric does not retain the data word just read, but
goes into the “high impedance'' state until the next read
cycle. Since we use the “PACKED WORD” memory
organization we need a mechanism to retain the read data
to avoid multiple memory accesses and bit masking to
acquire all the bits in a row.

Fig.3. Hardware Accelerator Block

1) Memory access interface enhancement: The
proposed hardware block in Fig. 3 for the SA algorithm
employs a special circuit that latches the data word read
from the memory into the Latch until the next word is
needed. The subsequent memory accesses for the matrix
elements are made to this register, as long as the required
matrix entries are in the current word. Fig. 4 depicts the
performance of the SA algorithm with and without the
addition of this circuit for several values of K. This simple
enhancement improves the performance by a factor of 5.5.
 It should be noted that the performance improvement is
solely due to the “the count of 1s” operation in Phase I of
Algorithm 2 for SA where memory accesses are sequential.
However, there is no performance improvement in Phases
II and III of this algorithm, and Algorithm 1 for GE, where
“row exchange”, “column exchange” and “row XOR'”
operations involve search for the elements of the matrix
from non sequential addresses.
 At 100 and 35 MHz speeds for the SDRAM, and the
logic, the hardware versions of GE and SA perform better
than their software versions, as reported in [5], by factors
of 1.76 and 20.31, respectively. This is in spite of the fact
that the software implementation of the algorithms runs on
a 100 MHz NIOS processor; a clock rate almost 3 times
faster. It should also be noted that hardware version of GE
performs better than the hardware version of SA by a factor
of 1.48. This ratio is less than the equivalent 20.48 ratio for

Fig.4. Performance of the hardware-enhanced Phase I of SA
algorithm

⎥
⎦

⎤
⎢
⎣

⎡
=

×

×

uiu

uii
Phase IZ

UI
A

II

⎥
⎦

⎤
⎢
⎣

⎡
=

×

×

uiu

uii
Phase IZ

ZI
A

III

ANNUAL JOURNAL OF ELECTRONICS, 2009

67

Fig.5. Effect of SDRAM memory speed on GE and SA

 algorithms

the software implementations in [5]. The reduction in the
performance ratio indicates that the SA algorithm benefits
far more that the GE in switching from software to the
hardware platform. This is mainly due to the speed up in
the “the count of 1s” procedure due to the simple
enhancement.

1) Effect of SDRAM and logic clock rates: Fig.5
shows the effect of the SDRAM speed on GE and SA
algorithms for (K=1024). The data is plotted for three
different logic clocks - 25, 30 and 35 MHz. While both
algorithms benefit from a faster SDRAM, the effect of
memory speed is more noticeable on the operation of the
GE algorithm. This is especially true for the slower
SDRAM region where the plots for SA and GE cross over
each other. The point of cross over moves to right for the
higher logic speed. This indicates that a faster logic
requires a faster SDRAM if the relative superior
performance of GE algorithm over SA were to be
maintained. This highlights the fact that the SA algorithm
benefits more from a faster logic.
 From Fig. 5 it can be inferred that the enhancement in the
“the count of 1s” procedure has the following effect. The
increase in the logic speed from 25 MHz to 35 MHz is
slightly more effective in improving the performance of the
SA algorithm. This is because the number of slow memory
accesses is significantly reduced due to the enhancement
which causes the computation to be more dependent on the
speed of the logic.

B. Power and Area
 Table 1 shows the power, energy and hardware resource
requirements for the FPGA implementation of the NIOS
soft-core processor with the proposed dedicated hardware
accelerator block for the matrix inversions, with the
SDRAM and logic operating at the speeds of 100 and 35
MHz, respectively. The NIOS processor is placed in idle
state when the control is passed to the dedicated hardware
accelerator. In spite of the addition of a new block, the
power dissipation is less for all cases, when compared to
the corresponding software implementations in [5]. From
the data in Table 1 it can be seen that the energy required
for the matrix inversion is 1.44 times less for the GE
algorithm compared to the SA.

The implementation with the dedicated hardware
block for GE needs several times less energy to invert the
same matrix compared to entirely software implementation
[5]. The saving factor is 3.43. The similar energy saving
factor for SA is, impressively, much higher at 22.04.

TABLE 1. POWER, ENERGY AND RESOURCES FOR THE HARDWARE
IMPLEMENTATION FOR (K=128) WITH 100 MHZ SDRAM AND 35

MHZ LOGIC SPEED.

GE POWER [MW] 1,564.71
SA POWER [MW] 1,564.02
GE ENERGY [MJ] 53.86
SA ENERGY [MJ] 77.64

HARDWARE
RESOURCES

LOGIC ELEMENTS 8,172
MEMORY BITS 47,360

V. CONCLUSIONS

 This paper has evaluated the performance of hard Raptor
decoder on embedded system. The performance of two
matrix inversion algorithms on dedicated hardware block
for embedded system has been presented. It was shown that
the hardware implementation achieves better performance
with less energy compared to a software implementation in
[5]. Furthermore, it was found that contrary to the
recommendation, based on the profiling on a workstation
platform, even under hardware implementation the
Gaussian elimination performs significantly better than the
alternative reportedly more efficient algorithm, in terms of
execution speed and energy saving.

ACKNOWLEDGEMENTS

 This work was (in part) supported by the Center for
Distributed Sensor Networks at GIST.

REFERENCES

[1] A. Shokrollahi, Raptor Codes, IEEE Transactions of
Information Theory, vol. 52, pp. 2551-2567, Jun. 2006.
[2] M. Luby, M. Watson, T. Gasiba, T. Stockhammer, and W. Xu,
Raptor codes for reliable download delivery in wireless broadcast
systems, Third IEEE Consumer Communications and Networking
Conference, vol.1, Jan. 2006, pp.192-197.
[3] 3GPP TS 26.346, Technical Specification Group Services and
System Aspects; Multimedia Broadcast/Multicast Services
(MBMS); Protocols and codecs, 3GPP Technical Specification,
Rev. V7.4.1, Jun. 2007.
[4] Digital Video Broadcasting (DVB); IP Datacast over DVB-H:
Content Delivery Protocols, ETSI Technical Specification, Rev.
V1.2.1, 2006.
[5] T. Mladenov, S. Nooshabadi, A. Dassatti, and K. Kim,
Analysis and implementation of raptor codes on embedded
system, 2009 IEEE International Conference on Electronics,
circuits and systems, (submitted).
[6] D. Parkinson and M. Wunderlich, A compact algorithm for
Gaussian elimination over GF(2) implemented on highly parallel
computers, Parallel Computing, vol. 1, pp. 65073, Aug. 1984.

