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Hardware Accelerator for Raptor Decoder 
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Abstract – Hard Raptor Codes (designed for erasure 
channels) are widely used for mobile multimedia content 
delivery, and yet they have not been investigated in the 
context of embedded systems where the energy dissipation is 
as important as the timing performance. The most time 
consuming part of Raptor decoder is the matrix inversion 
operation. This paper proposes a hardware accelerator, for 
two matrix inversion algorithms, as a part of Raptor decoder 
implemented on a system on a chip (SoC) platform with a 
soft-core embedded processor. The performance, energy 
profile and resource implication are analyzed and compared 
with a pure software implementation. 
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I. INTRODUCTION 
 

 Multimedia on mobile devices requires secure delivery 
of various sized data with minimum negotiation overhead. 
Here is where Raptor codes [1],[2] have come quite useful 
and outperformed the already well known coding schemes. 
Recently there have been two standards, namely 3GPP 
MBMS (Multimedia Broadcast/Multicast Services) [3] and 
DVB-H [4], which have included systematic Raptor codes 
in their specifications for content delivery. 
 Although Raptor codes are growing as a preferred 
mobile multimedia delivery scheme, experimental data 
relating to their implementations are reported from 
simulation on a workstation platform. As far as we are 
aware, their hardware implementations for mobile 
embedded systems have not yet been investigated. 
  This paper looks at the implementation of Raptor codes 
on an embedded system platform, where resources in terms 
of computational and power dissipation are limited. The 
most demanding part of the Raptor decoder, profiled to 
take 92% of the decoding time, is the matrix inversion 
operation. This motivates us to look for a hardware 
implementation of the matrix inversion that would reduce 
both the decoding time and the energy dissipation. We 
propose such dedicated hardware blocks for the well 
known Gaussian elimination (GE) algorithm and the 
efficient matrix inversion algorithm (SA) proposed in 
[3],[4]. The relative performance of these two algorithms in 
terms of decoding time, power, energy and area trade offs 
are demonstrated. We propose and design hardware 
enhancements for GE and SA based on their algorithmic 
structures. Finally, based on the profiling data, suitability 
assessments are made for the implementation of GE and 
SA on an embedded system platform. 
 The chosen embedded system platform is a NIOS soft-
core processor, running on an EP1S40F780C5 Altera 
Stratix FPGA, with 41,250 logical elements, 3,423,744 
total memory bits (2,097,152 bits maximum single memory 
size), 14 DSP blocks and 129 (9-bit) embedded multipliers.  

Fig.1. Raptor Codes on hardware/software NIOS  embedded 
system 

 
This device is housed on the NIOS Development Board 
Stratix Professional Edition with 16MB of SDRAM 
memory. NIOS soft-core processor can be augmented with 
custom instructions and additional peripheral devices. Fig.1 
depicts the high level block diagram of the embedded SoC 
platform for the implementation of Raptor codes. 
 This paper is organized as follows. In Section II, we 
briefly explain the operation of a Raptor decoder. Section 
III describes and presents the details of GE and SA, the two 
algorithms for the matrix inversion used in this paper. 
Section IV presents the hardware implementation 
performance results in terms of execution time, power and 
energy, and hardware resources and compares them to the 
software implementation presented in [5]. Section V 
concludes the paper. 
 

II. SYSTEMATIC RAPTOR DECODER 
 

 A Raptor code can be viewed as a regular linear block 
code, which makes it possible to be represented by a 
generator matrix. A block diagram of systematic Raptor 
encoder and decoder is shown in Fig.2. The decoding 
process of Raptor codes exchanges the positions of the 
Code Constraints Processor and the LT Encoder(Decoder) 
with the proper dimensions for the GLT LT generator 
matrices. The output vector e, containing N symbols, 
generated by the encoder is received by the decoder across 
the channel as input vector e', containing N' (K ≤ N' ≤ N) 
encoded symbols (which may be nonconsecutive, where K 
is the number of source symbols). Vector e' is padded with 
S+H zeroes to dimension it to (M=N'+S+H). Starting with 
(N'-K) the value of N' is iteratively incremented to make 
the Code Constraints Preprocessor matrix A invertible. 
The difference (N'-K) is equal to or greater than the number 
of received encoded symbols lost in the channel. The 
decoding is performed according to (1) and (2), where GLT 
is a LT generator matrix with dimension of K × L. All 
operations are performed in Galois Field GF(2). 
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Fig.2. Block diagram of the systematic Raptor Codes 
 

 
                                (1) 
 

 
                                       (2) 

 
 At the decoder side the submatrix GLT (1..N') is first 
built from the input data. The sequence number of the nth 
received encoded symbol is used to generate the nth row of 
the submatrix GLT (1..N') through the  LT encoding 
process. 
 

III. MATRIX INVERSION ALGORITHMS 
 
 The most common matrix inversion algorithm is GE [6]. 
The pseudo code for a GF(2) GE algorithm where 
elimination and backward substitution are performed 
together, is shown in Algorithm 1 .The main operations 
involved in this algorithm are “row exchange” and “row 
XOR” (Exclusive-OR). 
 The specifications in [3] and [4] recommend SA as a 
more efficient technique for matrix inversion. A version of 
SA technique is presented in Algorithm 2. The operation of 
SA is as follows. 
 In Phase I matrix A is reduced to the following form: 
 

 
 
                  (3) 
 
 

 
 This reduction is performed iteratively, by first 
relocating the rows containing the minimum number of 
“1s” to the top, and then moving the first column having 
“1” in this row to the beginning at column location i, and 
the remaining columns with “1” to the end of the row at 
column locations m-u-1. Note that i and u are initialized to 
0. While, in each row, i increments only once per row, u 
can increment multiple times. 
 In each iteration of the algorithm one row from the top is 
excluded from the consideration. Further, the count of “1s” 
within a row is confined to columns i to (m-u-1). Phase I is 
completed when (L=i+u). 

 
 In Phase II submatrix U is partitioned into lower and 
upper submatrices U'i×u and U''M-i×u, respectively. The 
lower matrix U''M-i×u is transformed into the identity 
matrix Iu through the normal Gaussian elimination 
technique. The (M-L) rows that are left below Iu are 
discarded. The form of the matrix produced at the end of 
Phase II is: 
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                          (4) 
 
 

 
 In Phase III the upper matrix U' is zeroed by XOR of its 
individual rows with the sufficient number of rows from 
the lower matrix Iu. 

 
 
                            (5) 
 
 

 
 It was shown in [5] that for pure software 
implementation and the "PACKED WORD" memory 
organization (where 32 matrix elements are packed 
together into a single 32-bit memory word) the simple GE 
algorithm outperforms SA by a factor of 20.48. 
 

IV. HARDWARE IMPLEMENTATION 
 

 The inversion of the Code Constraints Processor matrix 
in Fig. 2 has been profiled to be the most time consuming 
part of the Raptor decoder. To reduce this computational 
bottleneck, in what follows, a dedicated hardware block for 
matrix inversion is proposed (Dedicated Raptor Code 
Hardware in Fig.1), and its performance, power, energy 
dissipation, and the required hardware resources are 
presented and analyzed. 
 Fig.3 shows the block diagram of the hardware 
accelerator block. The Avalon switch fabric uses a slave 
port to set the Control Registers that initialize the hardware 
accelerator. During the initialization the size and initial 
addresses for matrix and vectors are set. Control Registers 
also control operation of the hardware like initiating START 
and STOP commands. The Hardware accelerator block 
uses an Avalon master port to access the whole memory 
mapped address space of the NIOS processor, and send 
interrupts to NIOS and receive interrupts from other 
peripheral devices. For a more flexible design Row & 
Column Exchange Logic, and Row XOR Logic units are 
designed to be self contained units that interface with the 
GE/SA Control Logic finite state machine. They share a 
common address generation path through the Arithmetic 
Unit that contains two 32-bit adders and one 16-bit 
multiplier. The Latch circuit only exists in the SA version 
of the hardware accelerator. 
 
A. Performance 
 SA algorithm includes a procedure for counting the 
number of “1s” in the matrix rows (Phase 1, lines 4 to 11) 
in Algorithm 2. After a memory read access the Avalon 
switch fabric does not retain the  data word just read, but 
goes into the “high impedance'' state until the next read 
cycle. Since we use the “PACKED WORD” memory 
organization we need a mechanism to retain the read data 
to avoid multiple memory accesses and bit masking to 
acquire all the bits in a row. 
 
 

Fig.3. Hardware Accelerator Block 
 

1) Memory access interface enhancement: The 
proposed hardware block in Fig. 3 for the SA algorithm 
employs a special circuit that latches the data word read 
from the memory into the Latch until the next word is 
needed. The subsequent memory accesses for the matrix 
elements are made to this register, as long as the required 
matrix entries are in the current word. Fig. 4 depicts the 
performance of the SA algorithm with and without the 
addition of this circuit for several values of K. This simple 
enhancement improves the performance by a factor of 5.5. 
 It should be noted that the performance improvement is 
solely due to the “the count of 1s” operation in Phase I of 
Algorithm 2 for SA where memory accesses are sequential. 
However, there is no performance improvement in Phases 
II and III of this algorithm, and Algorithm 1 for GE, where 
“row exchange”, “column exchange” and “row XOR'” 
operations involve search for the elements of the matrix 
from non sequential addresses. 
 At 100 and 35 MHz speeds for the SDRAM, and the 
logic, the hardware versions of GE and SA perform better 
than their software versions, as reported in [5], by factors 
of 1.76 and 20.31, respectively. This is in spite of the fact 
that the software implementation of the algorithms runs on 
a 100 MHz NIOS processor; a clock rate almost 3 times 
faster. It should also be noted that hardware version of GE 
performs better than the hardware version of SA by a factor 
of 1.48. This ratio is less than the equivalent 20.48 ratio for  
 

Fig.4. Performance of the hardware-enhanced Phase I of SA 
algorithm 
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Fig.5. Effect of SDRAM memory speed on GE and SA 

 algorithms 
 
the software implementations in [5]. The reduction in the 
performance ratio indicates that the SA algorithm benefits 
far more that the GE in switching from software to the 
hardware platform. This is mainly due to the speed up in 
the “the count of 1s” procedure due to the simple 
enhancement. 

1) Effect of SDRAM and logic clock rates: Fig.5 
shows the effect of the SDRAM speed on GE and SA 
algorithms for (K=1024). The data is plotted for three 
different logic clocks - 25, 30 and 35 MHz. While both 
algorithms benefit from a faster SDRAM, the effect of 
memory speed is more noticeable on the operation of the 
GE algorithm. This is especially true for the slower 
SDRAM region where the plots for SA and GE cross over 
each other. The point of cross over moves to right for the 
higher logic speed. This indicates that a faster logic 
requires a faster SDRAM if the relative superior 
performance of GE algorithm over SA were to be 
maintained. This highlights the fact that the SA algorithm 
benefits more from a faster logic. 
 From Fig. 5 it can be inferred that the enhancement in the 
“the count of 1s” procedure has the following effect. The 
increase in the logic speed from 25 MHz to 35 MHz is 
slightly more effective in improving the performance of the 
SA algorithm. This is because the number of slow memory 
accesses is significantly reduced due to the enhancement 
which causes the computation to be more dependent on the 
speed of the logic. 
 
B. Power and Area 
 Table 1 shows the power, energy and hardware resource 
requirements for the FPGA implementation of the NIOS 
soft-core processor with the proposed dedicated hardware 
accelerator block for the matrix inversions, with the 
SDRAM and logic operating at the speeds of 100 and 35 
MHz, respectively. The NIOS processor is placed in idle 
state when the control is passed to the dedicated hardware 
accelerator. In spite of the addition of a new block, the 
power dissipation is less for all cases, when compared to 
the corresponding software implementations in [5]. From 
the data in Table 1 it can be seen that the energy required 
for the matrix inversion is 1.44 times less for the GE 
algorithm compared to the SA. 

The implementation with the dedicated hardware 
block for GE needs several times less energy to invert the 
same matrix compared to entirely software implementation 
[5]. The saving factor is 3.43. The similar energy saving 
factor for SA is, impressively, much higher at 22.04. 
 

TABLE 1. POWER, ENERGY AND RESOURCES FOR THE HARDWARE 
IMPLEMENTATION FOR (K=128) WITH 100 MHZ SDRAM AND 35 

MHZ LOGIC SPEED. 
 

GE POWER [MW] 1,564.71 
SA POWER [MW] 1,564.02 
GE ENERGY [MJ] 53.86 
SA ENERGY [MJ] 77.64 

 
HARDWARE 
RESOURCES 

LOGIC ELEMENTS 8,172 
MEMORY BITS 47,360 

 
 
 

V. CONCLUSIONS 
 
 This paper has evaluated the performance of hard Raptor 
decoder on embedded system. The performance of two 
matrix inversion algorithms on dedicated hardware block 
for embedded system has been presented. It was shown that 
the hardware implementation achieves better performance 
with less energy compared to a software implementation in 
[5]. Furthermore, it was found that contrary to the 
recommendation, based on the profiling on a workstation 
platform, even under hardware implementation the 
Gaussian elimination performs significantly better than the 
alternative reportedly more efficient algorithm, in terms of 
execution speed and energy saving. 
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